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T
he rapid identification of cancer cells
or pathogens in body fluids is a chal-
lenging enterprise that is important in

both the clinical and research settings. For
example, timely identification of certain
bacterial strains in blood could modify the
choice of treatment and boost survivability
from sepsis.1,2 With cancer, the presence of
circulating tumor cells (CTCs) in blood has
been correlated with disease outcome and
patient survival for a number of specific
cancers;3 however, the routine identifica-
tion of CTCs as disease markers, for exam-
ple, in blood is not yet widespread,4 partly
due to the biological complexity of cancer,5

which is exacerbated by the variability of
the reported data6 and lack of standardized
definitions.7 The major challenges in rapid
cell and pathogen detection arise from the
need for a sensitive, reliable, automated
high-throughput method8 for identifying
subgroups of closely related cells, e.g.,
CTCs from tumors escaping the epithelial

phenotype.9 Detection of parameters such
as stemness markers1,2,10 or other unique
cell- and species-specific antigens or recep-
tors3,11�14 is of primary interest in assay
development in addition to the more tradi-
tional epithelial markers.
Cancer cell and pathogen diagnostics en-

tail capturing, analyzing, and, in some cases,
propagating a small number of cells, proce-
dures that would benefit from advance-
ments in manipulating small volumes and
individual cells. A variety of techniques have
been developed for manipulating and
analyzing cells using various approaches
including immunocapture with antigen-
based fluorescence detection,4,15�18 label-
free biomechanical separation,5,19 and fluo-
rescence-based cytometry in microfluidic
channels.6,20 The improvement of modular,
on-chip, microfluidics systems combined
with rapid spectroscopic detection would
greatly advance continuous single-cell anal-
ysis.7,21
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ABSTRACT Reliable identification and collection of cells from bodily fluids is of growing interest for

monitoring patient response to therapy and for early detection of disease or its recurrence. We describe a

detection platform that combines microfluidics with surface-enhanced Raman spectroscopy (SERS) for the

identification of individual mammalian cells continuously flowing in a microfluidics channel. A mixture of

cancerous and noncancerous prostate cells was incubated with SERS biotags (SBTs) developed and

synthesized by us, then injected into a flow-focused microfluidic channel, which forces the cells into a

single file. The spectrally rich SBTs are based on a silver nanoparticle dimer core labeled with a Raman-

active small reporter molecule paired with an affinity biomolecule, providing a unique barcode whose presence in a composite SERS spectrum can be

deconvoluted. Individual cancer cells passing through the focused laser beam were correctly identified among a proportionally larger number of other cells

by their Raman signatures. We examine two deconvolution strategies: principal component analysis and classical least-squares. The deconvolution

strategies are used to unmix the overall spectrum to determine the relative contributions between two SBT barcodes, where one SBT barcode indicates

neuropilin-1 overexpression, while a second SBT barcode is more universal and indicates unspecific binding to a cell's membrane. Highly reliable results

were obtained for all of the cell mixture ratios tested, the lowest being 1 in 100 cells.
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Label-free Raman spectroscopy can differentiate
cancer from normal cells8,22�25 or bacterial strains26

via subtle compositional differences in amino acid,
nucleic acid, or lipids, which generate weak, broadly
overlapping but, in certain cases, decipherable spectra.
Surface-enhanced Raman spectroscopy (SERS) is a
powerful method for cancer cell detection because of
its very much higher intensity (compared to normal
Raman) and narrower spectral bands relative to
fluorescence,27 which enables multiple marker recog-
nition. SERS has been used for cancer biomarker28�30

and pathogen12,31�33 detection and cell and tissue
imaging,34�38 but to date, only a few examples of SERS
cytometry39,40 have been reported, none using SERS
tags in microfluidics.
SERS signals arise from molecules residing in the

clefts or interstices in metal nanostructures.41,42 SERS
fingerprinting has been used to identify and quanti-
tatively measure concentrations of analytes43,44

and has had notable success in a microfluidics con-
text.45�47 Recent reports exploiting SERS for CTC48,49

and pathogen detection have shown promise in
recognizing cells by either the intensity of a bound
SERS reporter probe or the normal Raman features of
cells being sufficiently surface-enhanced through
contact with metal nanostructures.50 While these
advances are significant, additional biological insight
is expected from analysis of single cell receptor
expression patterns beyond the simple cell count or
positive/negative type of response. We have pre-
viously reported the synthesis of bright and stable
SERS-based tags (SBTs, SERS biotags) that are stable in
biological conditions and can bind mammalian
cells43,51,52 and have demonstrated multiplexed cell
identification based on surface marker expression
through point-by-point microscopic analysis of cells
deposited on a glass surface.51

Here, we describe a microfluidic chip-based cell
identification system that uses SERS to detect live
mammalian cells labeled with mixtures of two spectro-
scopically distinguishable SBTs that target distinct cell
epitopes. Cells forced by hydrodynamic flow focusing
into a single file at the center of the microfluidic
channel cross a focused laser beamat the interrogation
region, exciting the cell-bound SBTs. SERS identifica-
tion of cells takes place “on the fly” by measuring the
relative signal from a cancer-specific marker versus a
cell-identifying universal control marker. Two analyti-
cal methods are employed to categorize a cell as
cancerous or normal: a chemometric algorithm devel-
oped by us based on principal component analysis
(PCA) of the cell populations and a least-squares
deconvolution of SBT spectra into known “pure” com-
ponents, from which the receptor ratio was calculated.
In our approach, we exploit the high emission cross-
section of SERS from SBTs and leverage a new chemo-
metric approach for categorizing spectra, thus avoid-
ing sensitivity to focus and enabling reliable single-cell
identification in microfluidics (Figure 1).

RESULTS AND DISCUSSION

SBTs were assembled using in-house-synthesized
citrate-protected silver nanoparticle monomers
(∼45 nm diameter) that are controllably aggregated
into small clusters using phosphate and hexamethy-
lenediamine and encapsulated in polyvinlypyrrolidone
for stability (Figure S1) (see Materials and Methods for
details). A modified bovine serum albumin imparts
further stability and limits nonspecific cellular interac-
tions, while offering a handle for conjugation with cell-
targeting moieties, through the thiol-reactive SPDP
(succinimidyl 3-(2-pyridyldithio)propionate) group.51

Neuropilin-1 (NRP-1), a receptor that is overexpressed
on the membrane of cells in several cancers,53 was

Figure 1. Graphical depiction of device layout andflowdynamics. (A) Schematic of setup and concept. Cells, prelabeledwith a
cocktail of cancer-specific (NRP) and control (UC) SBTs (the latter binding both cell types), are injected into the device, where
they are flow-focused before passing through the Raman laser. (B) Simultaneous bright-field and epifluorescence (Cy3
channel, colorized orange) image of a single cell in the channel as a function of time illustrating the efficacy of flow focusing
(top). Epifluorescence image (FITC channel, colorized green) of 200 nm polymer beads separately injected into the buffer
channels, to highlight the sheath flow (center). Montage merging the two former images (bottom), showing the overall flow
dynamics in the device. A video shows cells flowing in the device in single file (Video S1) is available.
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chosen as a cancer-specific biomarker for NRP-SBTs,
while the HIV-derived cell-penetrating peptide TAT
was used as universal control (UC-SBTs). We used
NRP-1-overexpressing prostate cancer cells (PPC-1)
and normal RWPE-1 cells to demonstrate the specificity
of detection. Cells were harvested, mixed with the SBT
cocktail, and incubated for 60 min at room tempera-
ture on a tube rotator. After washing excess unbound
SBTs from the cells by centrifugation, the cells
were either mixed at specific cancer/normal ratios or
used pure as references and individually injected into
the flow-focusing PDMS-based microfluidic device
(Figure 1).
The device was designed with one inlet for sheath

buffer, one inlet for sample, and an outlet (Figure 1A).
The flow rate ratio between sheath and cell flow was
regulated by the geometry of the inlet and outlet
channels.54 A SERS spectrum was acquired for each
cell that passed through the laser. A typical run took
approximately 8 min; however the device could be
operated continuously without clogging or saturating
for several hours, in contrast to microfluidic-capture
technologies, where cells are captured on surfaces or
other features in the device. The flow rates and other
engineered features of the device were chosen so that
each cell would spend approximately 5�8 ms in the
laser beam.

SERS Analytical Strategy. Two strategies were used for
the analysis of single cell flow data: (i) principal com-
ponent analysis and (ii) classic least-squares (CLS),
using a custom Matlab algorithm, to compare the
relative performance of each model for cancer cell
identification.

The SERS-microfluidics system was initially charac-
terized by flowing and analyzing reference samples
consisting of either pure PPC-1 (cancer) or pure RWPE-1
(noncancerous) SBT-labeled cells. PPC-1 cells bind to
both NRP-SBTs and UC-SBTs, whereas RWPE-1 binds
predominantly to the UC-SBTs, with very low, mainly
nonspecific interaction with NRP-SBTs. Spectra were
collected every 100�150 ms, for a total of ∼1700 full
spectra (events) per run. To reduce the size of the
collected data, we first applied a “gating” PCA algo-
rithm (gPCA) (Figure 2) to remove the spectra that
contained only those peaks associated with PDMS, the
polymeric material from which the flow device was
fabricated. This gating left only the spectra that in-
cluded cell-related spectroscopic signals in convolu-
tion with the PDMS background. In this step, the
spectra were preprocessed by baseline subtrac-
tion, normalization by the total band area in the
280�1800 cm�1 wavenumber range, and mean cen-
tering, before gPCA analysis was carried out. No
smoothing was applied to the spectra during prepro-
cessing. The gPCA model was generated using PLS
Toolbox (Eigenvector Research, Inc., Wenatchee, WA,
USA), and one principal component (gPC1) was found,

which contained the spectral features characteristic
of SBTs, in addition to those associated with PDMS
(Figure S2). Accordingly, gPC1 was taken to be a
reliable criterion for gating cell events (Figure 2B, upper
panel). Each data point in the upper panel of Figure 2B
corresponds to a Raman spectrum. The lower panel
shows a magnified view of the typical spectra (after

Figure 2. Analysis of spectral data by PCA to classify cells as
either cancerous or normal. (A) Flowchart summarizing the
sequence of steps in our chemometric analysis by PCA. (B)
The upper panel shows the gPC1 scores for spectra from
two data sets (mix of SBT-labeled cancerous and normal
cells, green dots; mix of CellTracker orange labeled cancer
cells and unlabeled noncancerous cells, black dots), re-
turned by the gating PCA model generated to gate spectra
showing peaks associated with SBTs (high scores on gPC1)
over those showing only spectral contributions associated
with PDMS (gPC1 scores around 0). A gating threshold (red
horizontal line) was chosen based on the upper 95% con-
fidence limit of the gPC1 scores and was adjusted manually
depending on the signal/noise of the spectra around that
value. The lower panel shows a series of spectra collected
over approximately 2 s, corresponding to the time fraction
highlighted in the yellow box in the upper panel. Spectra
associatedwith events below the gating threshold, showing
only PDMS-relatedbands, are depicted in black, and spectra
with SBTs-associated peaks and gPC1 scores above the
gating threshold are shown in red. Spectra were smoothed
for clarity of presentation, but no smoothing was used for
the analysis.
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preprocessing) acquired over approximately 2 s. The
black spectra show only Raman peaks associated with
PDMS, which scored gPC1 values below the gating
threshold (red line) corresponding to the upper 95%
confidence interval of the model. The spectra in red,
instead, scored gPC1 values above the gating thresh-
old, indicating that they contained Raman bands asso-
ciated with either NRP-SBTs or UC-SBTs (Figure 2B).
These reduced data sets were analyzed by PCA
and CLS.

Principal Component Analysis of Pure Cell Populations. A
PCA model (generated using the PLS Toolbox) was
constructed using the reference spectra of pure normal
and cancer cells as calibration sets from which the
principal components (PCs) were determined. Three
components (PC1, PC2, and PC3) were found to de-
scribe approximately 45% of the overall variability of
the data (Figure 3A). The remaining 55% was found to
be associatedwith residualsmainly generated by noise
(Figure S3). A comparison between the principal com-
ponents and reference Raman spectra of PDMS, and
SERS spectra of NRP-SBTs (carrying the Raman reporter
thionin) and UC-SBTs (carrying the Raman reporter
methylene blue) (Figure 3A), shows that PC1 is primar-
ily composed of positive peaks identifying bands of
both NRP-SBTs and UC-SBTs, PC3 consists mainly of
spectral features of PDMS, and PC2 consists of negative
peaks corresponding to UC-SBTs bands at 1183 and
770 cm�1 and positive peaks correspond to NRP-SBTs
bands (1389, 909, and 809 cm�1). PC2 also shows a
negative peak at 1621 cm�1 and a positive peak at
1637 cm�1 (Figure 3A). The former (1621 cm�1) is a
feature present in the spectra of both the UC-SBT and
NRP-SBT, while the latter (1637 cm�1) coincides with a

shoulder in the spectrum of NRP-SBT. Clearly PC2 is the
component that discriminates confidently and strik-
ingly between cancerous and normal cells. Quantita-
tively, 95% of the cancerous cells showed positive
values of PC2 scores, while 95% of the noncancerous
cells produced negative PC2 scores. PC2 scores deter-
mined from experiments in which pure cell population
sampleswere flowed are shown in Figure 3B. A full data
set that includes experiments run on different days and
under different experimental conditions is shown in
Figure S4.

Classical Least-Squares Analysis of Pure Cell Populations.
The SERS results were also analyzed by CLS (Figure S4),
which assumes that a given composite spectrum is a
linear combination of the SERS spectra of the individual
tags, with the coefficients indicating the relative quan-
titative contribution of a given individual tag to the
composite. The coefficients returned by the CLS anal-
ysis were used to calculate the ratio NRP/UC for the
reference samples. The CLS model was constructed
based on a calibration set consisting of the composite
SERS spectra obtained from five mixtures of NRP-SBTs
and UC-SBTs at known relative concentrations
together with the Raman spectrum of PDMS. Pure
components were calculated using this calibration
set and the known contributions of each tag. The
NRP/UC ratios for any spectrum with unknown NRP-
SBT and UC-SBT concentration were then calculated
based on the contribution of each SBT predicted by the
CLS model. All the spectra were preprocessed prior to
CLS analysis (Figure S5), as described above.

Figure 4A summarizes graphically the statistics of
the data analyzed by CLS. For the RWPE-1 (normal)
cells, 95% show NRP/UC ratios below 0.72, and 95% of
PPC-1 cells (cancer) have NRP/UC > 0.71, in good
agreement with our previous report.51 Statistical
analysis (Mann�Whitney test, N = 686 for cancer cells
and N = 1013 for normal cells) confirms the two cell
populations to be significantly different at the 0.001
level. Note that these data were each collected in at
least three sets of experiments, using stocks of SBTs
synthesized from scratch on several occasions
(indicating the reproducibility of the SBTs) and cell
stocks separately thawed from a frozen repository,
thereby demonstrating the reproducibility of the
procedure across the biological variability spectrum.
Cells that were not incubated with SBTs were not
detectable by SERS, as shown in Figure 2B, where all
the recorded spectra show approximately zero gPC1
scores, indicating that only PDMS bands were present
in the SERS spectra.

SERS-Microfluidic Chip Analysis of Cancer and Normal Cells
Mixed Together. To determine the SERS-microfluidic
chip's ability to detect cancer cells in low concentration
against a background of other cells, samples were
prepared that comprised mixtures of normal and
cancer cells with varying ratios. Samples ranging from

Figure 3. Summary of results returned by principal compo-
nent analysis of the reference data set consisting of pure
cancer and noncancerous cells. (A) Reference spectra of
SBTs and PDMS (upper three plots) and principal compo-
nents (PCs, lower three plots). Color coding identifies spec-
tral bands unique to either SBTs or PDMS: UC-SBTs (blue),
NRP-SBTs (orange), PDMS bands (green). The alternating
blue/orange highlight identifies one band that in UC-SBTs is
dominant and narrow (fwhm 16.5 cm�1), but in NRP-SBTs is
broad (fwhm 25.4 cm�1), showing a shoulder at 1637 cm�1

(orange marker). (B) PC2 scores obtained from selected
reference data sets of pure PPC-1 (mostly positive scores)
and pure RWPE-1 cells (mostly negative scores).
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2% to 50% cancer cells among normal cells (all incu-
bated with SBTs) were injected into the devices, and
SERS signatures from SBT-labeled cells were recorded
using the same protocol as was used in the calibra-
tion runs.

Both PCA and CLS were used to analyze the data.
Cancer cell identification was based on the SBT statis-
tics determined in the reference set, which for PCAwas
a PC2 threshold score greater than zero (Figure 3B) and
for CLS, a NRP/UC ratio greater than 1.14, a value below
which 99% of normal cells lie (Table S1). Cell events
above thresholdwere classified as cancerous; all others
as noncancerous. Figure 4B shows the average SERS
spectra of reference RWPE-1 (blue) and PPC-1 (orange)
cells, compared with the average SERS spectra from a
5% cancerous/95% noncancerous cell mixture, which
was analyzed by CLS. The spectra of the cells assigned
to each group by CLS (and by PCA, not shown) were in
good agreement with the reference spectra, having all
themajor identifying peaks (highlighted by the orange

and bluemarkers). Cells identified as cancerous did not
have as prominentUC-SBTs bands (770 and1180 cm�1)
as normal cells. Cancer cells also showed a weaker
1620 cm�1 band intensity than normal cells, which
ideally should bind only UC-SBTs, and the band was
broader, similar to the cancer cell reference spectrum.

Figure 5 summarizes the results of the spectral
analysis of the cell mixtures. Cells above the respective
PCA and CLS thresholds (as determined by the meth-
odology described above using pure cancerous and
normal cell populations) were counted as cancerous,
and their percentage of the total number of cells
detected was plotted against the nominal percentage
of cancer cells introduced in the sample. The results
returned by the computations are in good agreement
(Figure 5A) with the as-prepared (nominal) sample
composition, with a linear relationship from 0% to
100% cancer cells (r2 = 0.999 for CLS and r2 = 0.995
for PCA), indicating excellent accuracy of both models
for the cell classification. On the basis of the results in
Figure 5A, we could reliably detect cancer cells down to
2%, by both CLS and PCA. Detecting such a low
percentage of cancer cells would be challenging for
microscopic mapping without enrichment of the sam-
ple. The results from PCA and CLS computations were
also compared to each other. Figure 5B shows good
agreement between detected cancer cell percentages
as determined by the two methods. At very low cancer
cell composition (0�5%), ratiometric analysis by CLS
shows superior performance at detecting the proper
number of cancer cells in an excess of normal, SBT-
labeled cells, compared to PCA.

For CLS ratiometric analysis (Figure 5), the mini-
mum percentage detectable (limit of detection) is
influenced by the threshold value that identifies
cancer cells as those events residing above threshold
(Figure 4B). This value was chosen so that less than 1%
of normal cells were above threshold. In order to
reduce the limit of detection for rare cancer cells, it
would be critical (for PCA or CLS) that the separation
between normal and cancer cells along the detection
coordinate be maximized. To detect 1% cancer cells
within amixture, a more conservative threshold could
be established with much fewer normal cells above it
(e.g., 0.1% of normal cells above). To reduce further
the probability of normal cells registering above
threshold, refinements to the specificity of the SBT
coating or additional SBTs (specifically tagging
unique receptors) can be introduced, opening up
new detection coordinates.

It is worth noting that although the above detection
limit may seem too high for applications such as CTC
detection from whole blood, it refers to the identifica-
tion of a specific population of SBT-labeled cells that
give a SERS signal; a multitude of SERS-inactive un-
labeled cells (Figure 2B), e.g., blood cells, may be
tolerated without degrading the sensitivity. This SBT

Figure 4. Analysis of SERS data by CLS. (A) Box plots of
reference data for normal (RWPE-1) and cancer (PPC-1) cells
showing the ln(NRP/UC) as calculated from the CLS analysis.
The boxes are well separated along the ln(NRP/UC) axis,
confirming that the ratiometric SERS is a robust discrimi-
nant for cancer cell detection. The two populations are
statistically different, Mann�Whitney test, p < 0.001. (B)
Average SERS spectra of RWPE-1 and PPC-1 cells from
reference data compared to the average spectra of cells
classified as either cancer or normal by CLS from a sample
containing a mixture of the two cell types with 5% cancer
cells. Orange and blue highlighting indicates bands pre-
dominant in NRP-SBTs and UC-SBTs, respectively.
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labeling strategy could be employed along with other
cell enrichment methods for processing increased
volumes of whole blood for CTC detection.

PCA (Figures 3 and 5) was shown to be a successful
strategy for distinguishing cancer cells from their
noncancerous counterparts, in a set of spectra de-
rived from multiple cells interrogated using micro-
fluidics, while significantly increasing the throughput
over microscopic imaging.51 In scenarios where pure
cell populations are not known a priori, PCA appears
to be the strategy of choice for classification, while
CLS yields more comprehensive biological detail re-
garding the quantitative levels of receptor expression.
In some instances, given the complex relationships
among CTC cells and their subgroups (e.g., epithelial,
mesenchymal, overexpressing cancer biomarkers)
that differ subtly from one another, cells may need
to be labeled with a larger number of tags for their
proper differentiation. Chemometric PCA and CLS
analyses can be scaled up to deal with such more
complex analyses, although the implementation be-
comes progressively complex as the number of tags
increases. Under such circumstances CLS, which we
showed has great resilience to variations in flow
dynamics and laser focal-plane fluctuations, could
augment PCA through pairwise receptor overexpres-
sion analysis designed to highlight biological patterns
and diversity.

Validation of PCA and CLS Analysis of Mixed Cell Samples. In
selected experiments, in addition to SBT-labeling,
cancer cells were fluorescently stained with CTO
(CellTracker orange) and mixed with normal cells with-
out fluorescent dye at either 50%or 10%of the total for
microscopic characterization. The dye does not have a
SERS signature (Figure 2B, black dots). Fluorescence
microscopy was used to determine the composition of
the samples prior to injection (Figure S6) and during
flow (rather than relying on the accuracy of the nom-
inal composition). Prior to injection, cells were placed
on glass slides and the number of fluorescently labeled

cells counted. An average of 50 images per sample
(∼480 cells/sample) were analyzed. The fraction of cells
that registered positive by fluorescence agreed well
with the nominal value, validating the sample prepara-
tion protocol (Figure 5C). Cell counting by microscopy
also validated the CLS2 andPCA analysis, indicating the
level of confidence with which those algorithms are
able to identify cells.

CONCLUSION

An integrated microfluidic SERS system is described
that identifies and counts cancer cells from a popula-
tion of cells flowing through a microfluidic channel.
The resulting signals are analyzed by deconvolving
SERS signals originating from two affinity labels excited
by a single laser. The two cell-targeting SBTs were
selected so that one binds cancer cells specifically,
while the other binds nonspecifically and functions as a
non-cell-specific control. The reporter molecules each
contributed a unique Raman spectrum. We adapted
two algorithms for distinguishing cancerous cells from
normal cells: (i) principal component analysis and (ii)
classical least-squares. The relative merits of the two
models are compared for identifying low-concentra-
tion cancerous cells from a population of noncancer-
ous cells. PCA has the advantage that it does not
require reference spectra, whereas the CLS can
confidently;and more importantly quantitatively;
report the relative contribution of each targeted re-
ceptor species to the overall spectrum by deconvolu-
tion. The spectroscopic richness of the Raman bands of
the reporter molecules residing on the two SBTs was
fundamental for the successful categorization of cells,
down to one cancer cell from a population of 100
noncancerous cells, while being interrogated by the
laser beam for 20 ms.
The approach is shown to be highly insensitive to

such parameters as the small batch-to-batch variability
in the properties of the SBTs, flow rate, and integration
times. The approach provides one-step cell labeling,

Figure 5. Comparison of results fromPCA andCLS analysis at low cancer cell concentration. (A) The percentage of cancer cells
detected by PCA (magenta, solid symbols) and CLS (black, open symbols) is plotted against the nominal percent (indicating
the composition loaded in the device reservoir). Error bars indicate ( SEM (standard error of the mean). (B) PCA and CLS
detection performance across a range of sample compositions. Labels for each data point indicate the nominal cancer cell
percentage of each sample. (C) Bar graph comparing cancer cell counts by microscopy, PCA, and CLS. Cancer cells were
labeled with CTO, prior to incubation with SBTs, and mixed with RWPE-1 cells. Before injecting the sample into the device an
aliquot was placed on a microscope slide and fluorescent cells were counted, comparing the results with PCA and CLS and
against the nominal value.
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continuous cell analysis, a disposable low-cost device,
and nondestructive tumor cell identification, and offers

a clear path to multiplexed receptor expression anal-
ysis at the single-cell level.

MATERIALS AND METHODS

SERS Biotag Synthesis and Assembly. SBTs were synthesized as
described in the SI. The appropriate Raman reporter and cell
targeting peptide (methylene blue and FAM-cys-TAT for UC-
SBTs; thionin and FAM-cys-RPARPAR for NRP-SBTs) were at-
tached to the SBTs.

Cell Culture. PPC-1 cells were a generous gift from Erkki
Rouslahti's group (Sanford-BurnhamMedical Research Institute,
UC Santa Barbara). RWPE-1 cells were from ATCC. Cells were
cultured (see SI), harvested using a nonenzymatic cell dissocia-
tion buffer (Invitrogen #13151-014), washed by centrifugation,
and resuspended in the appropriate volume of DMEM þ 10%
FBS in order to obtain a concentration of 1.0 � 106 cells/mL.
SBTs were then added (with UC versus NRP ratio of 1:1 v/v) and
incubated for 60 min at room temperature on a tube rotator to
guarantee mixing and avoid cell settling. Excess unbound SBTs
in the supernatant were removed after centrifugation, and
samples for injection into the devices in measurement buffer
(SI) were supplemented with 19% OptiPrep (Sigma).

For fluorescence microscopy analysis, PPC-1 cells were
stained with CellTracker orange (Life Technologies) prior
to harvesting. Cells were imaged using an Olympus BX41
microscope.

Device Fabrication. The microfluidic device was designed
based on ref 54. The geometry of the inlet and outlet channels
determined the flow rate ratio between the sheath and sample
flows. The devices were made of PDMS (Sylgard 184) using an
SU-8 mold and standard soft lithography techniques and
sandwiched between two microscopy glass slides (SI). Holes
were drilled through the glass to correspond to the channel
holes, and pipet tips were inserted to serve as reservoirs and
connection ports to the tubing. The flow was actuated by a
diaphragm vacuum pump (Gast Manufacturing Corporation)
connected to the outlet of the device. The channel dimensions
were 50 μm wide by 40 μm deep, and the sample flow was
focused down to 7 μmafter the junction. Thewide interrogation
section of the outlet channel was 350 μm wide. The centerline
fluid velocity in the interrogation region was designed to be
2 mm/s. Cell-containing samples were injected into the middle
channel, and buffer was used for the sheath flow in the side
channels.

SERS Measurements. The SERSmeasurementswere carried out
on a Horiba Jobin-Yvon LabRAM Aramis spectrometer,
equipped with a 633 nm laser for excitation. The laser was
focused through a 10� objective (11mWpower at sample) with
integration time set to 20 ms. Points were acquired every
100�150 ms for approximately 8 min for each run. The slit
was set to 250 μm and the hole to 600 μm, and a 600 gr/mm
grating was used.

Data Analysis. A custom Matlab (Mathworks, Inc., Natick, MA,
USA) algorithm was developed to preprocess and analyze the
spectral data (see SI). “Gating” PCA data set size reduction was
performed using the PLS Toolbox (Eigenvector Research, Inc.)
on all the data, in order to remove all the spectra showing only
peaks attributed to PDMS. The raw spectra (from the reduced
data set) were baseline subtracted by a weighted least-squares
filter, normalized based on the area under the spectrum from
725 to 1800 cm�1, and mean-centered. Data analysis was done
with PCA. PCA was performed to categorize the spectra of
normal and cancer cells using the PLS Toolbox. The PCA model
(see SI) was constructed using the reference spectra of pure
normal and cancer cells (calibration set) to find the PCs. The
spectra recorded from samples containing cancer and normal
cells mixed together were tested by the model to determine
their scores on the basis of the PCs found through the calibra-
tion set. The scores on PC2were then used to classify each cell as
either cancer or noncancerous. Data analysis was done with
classic least-squares. Spectral deconvolution was performed

using PLS Toolbox with a classic least-squares model that we
trained with a calibration set consisting of five mixtures con-
sisting of NRP-SBTs and UC-SBTs combined at known relative
ratios and the Raman spectrum of PDMS (see SI). The CLS
determined the ratio of the contribution of each SBT to the
cell's spectrum (NRP as a cancer marker and UC as a universal
control). The NRP/UC ratios were assumed to be the ratio of the
coefficients returned by the CLS model.
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